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Abstract-The stability of a plane-parallel stationary advective binary mixture flow in a horizontal layer 
due to horizontal temperature and concentration gradients is investigated theoretically. The layer surfaces 
are assumed rigid. The main plane-parallel flow and its linear stability against small two-dimensional 
disturbances is studied with three types of boundary conditions for temperature and concentration : (a) 
fixdd longitudinal temperature and concentration gradients ; (b) a constant longitudinal temperature 
gradient and impermeability; and (c) heat insulation and impermeability. The spectral problem for the 
amplitudes of normal perturbations is formulated. The case of mechanical equilibrium in the absence of a 
density gradient is considered. Further, the case of long wave instability for (b) and (c) is studied analytically 
by an asymptotic expansions technique. The results of numerical simulation of a complete spectral problem 
for amplitudes are discussed for Pr = 0.01 and SC > Pr. The limits of the flow stability and the charac- 
teristics of critical perturbations are determined for all the indicated types of boundary conditions. The 
instability is shown to be caused by hydrodynamic and thermoconcentration (double diffusive) mechanisms. 

7. INTRODUCTION 

FOR THE past 20 years many research workers have 
been interested in advective flows arising in liquids 
and gases in the gravitational field due to a horizontal 
density gradient. This interest is dictated by a number 
of geophysical and technological applications, which 
in particular include the atmospheric Hadley circu- 
lation, some types of motion in the ocean and in the 
Earth’s crust and mantle, transfer processes in shallow 
water reservoirs, motion of the melt in crystal growth 
installations (the horizontal variant of Bridgeman 
technique), and so on. 

As velocity increases, advective flows lose their stab- 
ility being naturally accompanied by the crisis of heat 
and mass transfer. A review of the stability exam- 
ination results of single component liquid advective 
,flows in a plane horizontal layer #with a longitudinal 
horizontal temperature gradient is given in refs. [ 1, 21. 
A remarkable feature of advective flows is the 
existence of instability mechanisms, which are differ- 
ent by their physical nature, but which eventually lead 
to the main flow crisis in various ranges of governing 
parameters. For instance, when the Prandtl number, 
Pv, is small, the purely hydrodynamic instability 
mechanism underlying the interaction of advective 
flows travelling in opposite directions is of great sig- 
nificance. For moderate and large Prandtl numbers, 
instability is, as a rule, caused by the stratification 

(Rayleigh) mechanism operating in those cases when 
flow leads to the formation of zones of potentially 
unstable stratification in the layer. The region of 
potentially stable stratification can also give rise to 
growing disturbances connected by their nature with 
the generation of internal waves ; the corresponding 
instability mechanism, just as the hydrodynamic one, 
operates in the range of small Pr numbers. Finally, if 
there is a free surface, the appearance of the specific 
Marangoni instability mechanism is possible which 
arises due to the thermocapillary effect. 

Investigations of flow structure and of heat and 
mass transfer in crystal growth installations for the 
horizontal variant of directed crystallization tech- 
nique [3, 41, as well as geophysical applications, 
naturally require the extension of the advective flow 
stability problem to the cases of binary and 
multicomponent mixtures. Apart from the instability 
mechanisms operative in a single component medium, 
the mixture can be expected to display various mani- 
festations of thermoconcentration (double diffusive) 
instability mechanism due to the difference in charac- 
teristic times for heat and mass diffusion. 

The problem of plane-parallel advective binary mix- 
ture flow instability has received comparatively little 
attention [5-71. In refs. [S, 61 the binary mixture flow 
in a layer with rigid heat insulated boundaries was 
considered in the presence of a horizontal temperature 
gradient and at different (fixed) concentrations cor- 
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NOMENCLATURE 

A longitudinal temperature gradient 
B longitudinal concentration gradient 
C concentration 
Co(Y) concentration profile in basic flow 

D diffusivity 
a operator d 2/dy2 - k* 
cf,(Y),f2(Y),f3(Y)) functions determining 

basic profiles 
9 acceIeration of gravity 
Gr thermal Grashof number 
CT, concentrational Grashof number 
Gr, thermal Grashof number minimized 

with respect to k 
h half of layer thickness 
k wavenumber 
k, critical wavenumber 
P pressure 
Pr Prandtl number 

Pr* limiting Prandtl number for 
hydrodynamic mode 

RU thermal Rayleigh number 
&I concentrational Rayleigh number 
E, R, stability parameter for mechanical 

equilibrium and its critical value 
S Lewis number 

SC Schmidt number 
T temperature 
t time 
V velocity 
Q(Y) velocity profile in basic flow 
(D’rP’, T’, C’) small disturbances of velocity, 

pressure, temperature, and concentration 
(x, Y, z) Cartesian coordinates. 

Greek symbols 

;: 
coefficient of thermal expansion 
concentrational coefficient of density 

: 
unit vector directed vertically upward 
disturbance in the case of equilibrium 

1 = A,+ iAi characteristic decrement 
V coefficient of kinematic viscosity 
P density 
PO standard vaIue of density 
Q,(Y) temperature profile in basic Aow 
X coefficient of thermal diffusivity 
y stream function 
(+, r) amplitudes conjugated to (4, [> 
(Q,(Y), B(Y), 2 (Y)) disturbance amplitudes 

for stream function, temperature, and 
concentration. 

responding to unstable vertical stratification. In ref. 
[7] the case of a binary mixture is discussed for a layer 
bounded by rigid impermeable highly conducting sur- 
faces in the presence of both longitudinal temperature 
and concentration gradients. It is shown that three 
instability mechanisms are realized in the mixture 
which are typical for a single component medium and 
which are associated with the development of plane 
and helical disturbances. 

In this paper we begin a systematic study of linear 
plane-parallel binary mixture advective flow stability 
in a plane horizontal layer bounded by rigid surfaces 
in the presence of longitudinal temperature and con- 
centration gradients. The main flow and its stability 
against normal two-dimensional monotonous per- 
turbations are investigated for three types of bound- 
ary conditions : (a) fixed longitudinal temperature and 
concentration gradients ; (b) impermeability and con- 
stant longitudinal temperature gradient ; (c) imper- 
meability and thermal insulation. The spectral ampli- 
tude problem is formulated for the case of two- 
dimensional normal disturbances. It is expected that 
for (b) and (c), long-wave perturbations will be of 
importance. For their description, the regular per- 
turbation technique is used based on the series expan- 
sions of amplitudes and eigenvalue (decrement) in 
powers of a small parameter, i.e. the wavenumber k. 
To solve the problem at arbitrary (finite) values of k, 
numerical techniques are used. First, a special case of 

mechanical equilibrium is considered which appears 
under the conditions of mutual compensation of den- 
sity gradients produced by horizontal temperature 
and concentration gradients ; here the instability orig- 
inates which is caused by thermoconcentration mech- 
anism. Numerical solution of the complete spectral 
amplitude problem is carried out for the Prandtl num- 
ber Pr = 0.01 at the Schmidt number SC > Pr (cor- 
responding to molten metal or an admixture-con- 
taining semiconductor). The boundary of the steady- 
state flow stability is described by a curve in the plane 
of the thermal Grashof number, Gr, vs the con- 
centrational Grashof number, GYP. This curve (at fixed 
Pr) depends on the Schmidt number, SC. Such families 
of stability curves are plotted for all the mentioned 
types of boundary conditions. The critical values of 
the wavenumber have been determined and the forms 
of critical disturbances have been studied. The 
numerical results make it possible to provide expla- 
nations for details relating to the interaction of 
hydrodynamic and thermoconcentrational instability 
mechanisms. 

Section 2 presents the formulation of the problem, 
including governing equations, and introduces the 
dimensionless variables and similarity criteria. Solu- 
tions describing the plane-parallel advective regime 
for all indicated types of boundary conditions are 
given in Section 3. Section 4 contains the stability 
problem and spectral amplitude problem formu- 
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lations. The description of the technique applied to 
solving the spectral amplitude problem is given in 
Section 5. Section 6 deals with the results of solution 
of the equilibrium stability problem. Section 7 
includes the long-wave instability analysis for (b) and 
(c) variants. Sections 8 and 9 contain the discussion of 
numerical results for stability boundaries and critical 
perturbations characteristics. 

2. THE PROBLEM FORMULATION. 
BASIC EQUATIONS 

Consider an infinite plane horizontal layer of binary 
mixture between two parallel plates y = t h (Fig. 1). 
In the interior of the layer constant longitudinal gradi- 
ents of temperature and concentration of the lightest 
component of the mixture are maintained : 

s +tL-dT 
-ddx=A 

-/_ ax 

c 

wL. ac 
-dx=B. 

-_L ax 
(2) 

The objective is to determine a steady-state advec- 
tive flow originating under the above conditions and 
to study its stability against small disturbances. 

Suppose that the deviations of temperature T and 
concentration C from some standard values are small, 
and that the mixture density depends linearly on these 
deviations : 

P = PO(~--81 T-&c> 
Here p0 is the density corresponding to standard tem- 
perature and concentration, /3i is the coefficient of 
thermal expansion, /I2 is the concentrational 
coefficient of density (it is supposed that & > 0 
because C is the concentration of the lightest com- 
ponent of the mixture). 

Let us write the equations of binary mixture con- 
vection in Boussinesq approximation (see ref. [S]). 
Assuming all the transport coefficients to be inde- 
pendent of temperature, concentration and pressure 
and neglecting the ‘cross’-effects of thermodiffusion 

and diffusional heat conduction, we obtain a system 
of equations 

;+(oV)o = -;V~+vaut&I,T+/W)y 

divu = 0 

$+T= xAT 

g fvVC = RAC. 

Here u is the velocity, p is the pressure deviation 
from the hydrostatic one, corresponding to constant 
density p0 ; v,x, D are the coefficients of kinematic 
viscosity, thermal diffusivity and of diffusion respec- 
tively ; g is the gravity acceleration ; y is the unit-vector 
directed vertically upward. 

The system of equations (3) can be written in non- 
dimensional form. Introduce the following units for 
distance, time, velocity, temperature, concentration, 
and pressure : h, h’/v, v/h, Ah, Bh, pov2/h2, respectively. 
Then, the equations will acquire the form 

av z + (oV)o = -Vp+Ao+ (Gr- T+Gr,- C)y, 

divv = 0 

$VT=&AT 

The system of equations (4) contains four non-dimen- 
sional parameters : thermal and concentrational 
Grashof numbers based on longitudinal tempera- 
ture and concentration gradients, Gr and Gr,, and 
also the Prandtl number Pr and Schmidt number SC : 

Gr = gP,Ah4 -, Gr,= g&Bh4 
V2 

-, pr==q sc=g. 
V2 x 

(5) 

Hereafter, we will use also the thermal and con- 
centrational Rayleigh numbers, i.e. Ra and Rad. in 
some cases, one other parameter, i.e. the Lewis 
number, S, determining the relation between charac- 
teristic times for diffusion and heat conduction, plays 
an important role. These parameters are defined as 
follows : 

RazgB1Ah4=Gr.pr , vx 

Ra 

d 
= gP,Bh4 -= Gr-SC, s=$=$ 

VD (6) 

3. BASIC FLOW 
The system of equations (4) has a solution which 

describes a steady-state plane-parallel advective flow 
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appearing in a horizontal layer under the action of 
longitudinal temperature and concentration gradi- 
ents. This flow has the following structure 

V Oy = Vor - - 0, VOX = VO(Y)> PO =Po(x,Y) 

TO = x+zo(y), CO = x+c,(.Y), (71 

where uO, p,,, zo, and c,, are the solutions of the 
equations 

3Po 3PO -= 
3X 4, dv = Gr-To+Grd-CO (8) 

Equations (8) yields 

06’ = Gr i_ Gr,<. (10) 

Suppose that the layer boundaries are rigid, so that 
the non-sleep condition is satisfied on them. Besides, 
suppose that the flow is ‘closed’, i.e. the total flux 
through the section of the layer is equal to zero. Thus 
we have 

s 

+1 

uo(*l> = 0, vo(v> du = 0. (111 
--I 

Performing integration of equations (10) taking into 
account equation (11) we obtain (irrespective of the 
boundary conditions for temperature and concen- 
tration) the velocity distribution in the plane-parallel 
advective flow 

uo = (GJ++ Grdf; (Y>> fi(Y> = &‘-Y>. (12) 

The temperature and concentration profiles are to 
be determined from equations (9). Hereafter we will 
consider three variants of boundary conditions : 

variant (a) : constant temperature and con- 
centration gradients are maintained on the 
boundaries of the layer ; 
variant (b) : constant temperature gradient is 
maintained on the boundaries and they are 
impermeable ; and 
variant (c) : the boundaries of the layer are imper- 
meable and thermally insulated. 

have the following boundary conditions, 
respectively : 

y=t1: z 0= CO = 0 (13a) 

y= fl: zo= 0, c;=o (13b) 

y= fl: z;=c,,=o. (13c) 

Integration of equations (9) subject to conditions (13) 
yields the temperature and concentration profiles for 
the three variants of the boundary conditions 

zo = PdGv t G~d1Y-z lu> > co = Sc(@ + GT,~)J; (~1, 

_fZ(Y) = & (3Y5 - 10Y3 + 7Y) Cl+) 

~0 = fWGr+Gr,)f,(y), co = Sc(Gr+Gr,)f,(y), 

“6(y) = & (3y5 - 10Y3 + 15Y) (14b) 

z o = Pr(Gr+Gr,)J;(y), co = Sc(Gr+Gr,)f,(y). 

(f4c) 

The solution presented extends the well-known 
Birikh solution [9] to the case of plane-parallel binary 
mixture advection. The functions.f,(~),f,(~), andf,(y) 
which determine the velocity, temperature, and con- 
centration profiles for different variants of boundary 
conditions are shown schematically in Fig. 1. The 
velocity profile described by the third-degree poly- 
nomial (12) corresponds to the existence of two coun- 
ter-flows and has an inflection point. Thus, it is evident 
that, irrespective of boundary conditions for tem- 
perature and concentration, it is possible to expect the 
appearance of the hydrodynamic instability mode of 
non-viscous nature, which develops as a system of 
steady vortices on the boundary of two counter-flows 
(at least, in the region of small Prandtl and Schmidt 
numbers). The transverse distributions oftemperature 
and concentration testify to the existence of the 
regions of potentially stable and potentially unstable 
density stratification in the layer. The position of these 
regions depends on the relationship between the par- 
ameters of the problem; for example, it depends on 
the signs of Gr and Grd. Thus, the appearance of 
stratificational modes of instability is possible for both 
Rayleigh type and those caused by the generation of 
internal waves. Finally, in the situation discussed, a 
specific thermoconcentrational (double-diffusive) 
mechanism of instability can appear which is caused 
by the difference in the characteristic relaxation times 
for temperature and concentration. As it is seen from 
equations (12) and (14), when Gr, = - Gr, we obtain 
u. = 0, z. = 0 and co = 0, i.e. we deal with mechanical 
equilibrium when the total density gradient is absent, 
since the horizontal density gradients, caused by the 
temperature and concentration gradients compensate 
each other. It is evident that both hydrodynamical 
and stratificational modes of instability are absent in 
this situation. As for the thermoconcentrational mode 
of instability, the situation, on the contrary, is favour- 
able for its development (see ref. [l]). To be sure, 
the thermoconcentrational mechanism of instability is 
operative not only in the special case when 
Grt Gr, = 0 ; this situation is outstanding only 
because two other mechanisms are suppressed. 

4. STATEMENT OF STABILITY PROBLEM. 
EQUATIONS FOR DISTURBANCES 

To investigate the stability of the described plane- 
parallel flows introduce small disturbances and con- 
sider disturbed fields : 

0 = D() + u’, P = PO 1-P’, 

T= T,+T’, c = c, + C’. (15) 
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Substituting representation (15) into the basic system 
of equations (4) and linearizing about the basic solu- 
tion, equations (7) and (S), we obtain a system of 
equations for disturbances : 

i3.f 
dt + [(vgV)v’+ (u’V)v,] = -Vp’+Au’ 

+ (CA-T’ + Gr,C’)y div v’ = 0, 

I 

% +v,VC’-t-v’VCo =&AC. (16) 

In this work, we shall limit our discussion to two- 
dimensional (2D) disturbances of the form 

u: = 0, u: = &(X,Y>O, v; = v;(x>Y> 9, 

P'=P'c%Y,t), T' = T'(x,Y,t), c' = C'(x,y,t) 

(17) 

and intro+uce the stream function by relations 

’ _E 
dYI 

ux - 
3Y ’ 

VY dx (18) 

Considering 2D disturbances, we thus confine our 
attention only to instability modes caused by the 
action of hydrodynamic and thermoconcentrational 
mechanisms [the experience of the stability problem 
solution for an one-component fluid shows that strati- 
ficational instability modes substantially result from 
3D spiral-type disturbances (see refs. [l, 2])]. 

Excluding pressure from equation (16), introducing 
the stream function and considering the ‘normal 
mode’-type disturbances 

(‘I-‘, T’, C) = (4(Y), WY),W)) exp (-at+iW (19) 

we obtain a system of linear homogeneous ordinary 
differential equations for the amplitudes 4,6’ and [ : 

(~1V-2k2~“+k4#)+ik[Ll~g-vo,(~“-~2~)] 

--ik(GrB+Gr,t) = -a(@-k’+) 

~(e---k”B)+ik(c;4-u,B)--4’ = -/W 

Here II = ;l,+i/zi is the decrement, k is the wave- 
number; here and hereafter the prime means differ- 
entiation with respect to the transverse coordinate y. 

The boundary conditions for amplitudes for the 
three variants are of the form 

y= fl: 4 = 4’ = 0, 8 = 0, c=o (2la) 

y= &l: $=f#‘=O, 0=0, {‘=O (2lb) 

y= II: # = 4’ = 0, 8’ = 0, 5’ = 0. (2lc) 

The system of amplitude equations (20) together 
with one of the variants of boundary conditions (21) 

form the spectral amplitude problem with the charac- 
teristic decrement II as an eigenvalue; the decrement 
h depends on all the parameters Gr, Gr,, Pr, SC, and 
k. The eigenvector of the problem is the set of charac- 
teristic amplitudes $, 8, and 4. If the eigenvalue ;1 is 
real, the stability boundary is determined from the 
condition 1 = 0. If the eigenvalue is complex one, 
A = /Z,+ i&, then the stability boundary can be deter- 
mined from the condition a, = 0. In this case the 
imaginary part ;li does mean the frequency of neutral 
oscillations. The study of stability thus reduces to the 
construction of a dispersional relation for problem 
(20), (21). 

Note that physically the situation does not change 
,if a simultaneous change occurs in the signs of Gr and 
Gr, i.e. in the directions of the horizontal temperature 
and concentration gradients (this also relates to the 
instability characteristics). It is evident that in the 
case when the amplitudes 6’ and < satisfy the same 
boundary conditions [variants (a) and (c)] there also 
exists symmetry with respect 
Gv * Gr, and Pr 0 SC. 

to the changes B+ r, 

5. APPROXIMATE METHODS 
It is hardly possible to rely on the obtention of an 

exact solution for the formulated spectral amplitude 
problem (20), (21). To solve the problem, we used 
approximate methods. In the case of impermeable 
boundaries [variants (b) and (c)l, we can postulate 
that there is a long-wave instability mode which under 
certain conditions turns out to be most dangerous. 
To solve the problem for long-wave disturbances, the 
regular method of perturbations with wavenumber k 
as a small parameter was used. This allows one to 
find the stability boundaries for a long-wave mode 
analytically. 

In the case of an arbitrary relation between the 
parameters, the problem was solved numerically by 
two methods. In the first place a straightforward 
numerical integration of the amplitude equation sys- 
tem was employed using the differential factorization 
procedure (see ref. [9]). Secondly the Galerkin method 
was used in its version when the systems of charac- 
teristic disturbance amplitudes in a motionless layer 
are used as basic functions. 

The eigenfunctions of the folIowing two-point 
boundary problem were used to approximate the 
stream-function amplitude 

&“-2k2$,fk4& = -pUn(#I:-k2#Q 

#n(,l)=~:l(+l)=o, n=0,1,2 ,.... (22) 

To construct approximations for the amplitudes 0 
and e, we used -the boundary problems for the basic 
functions, respectively 

W:-k20n = -v,PYO,,, O,(+l) = O(a),(b); 

0:(&l) = O(c) (23) 
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C--k*L = --xr,S~5,, L(-tl) =0(a); 
C(Ik 1) = 0 (b), (cl. (24) 

In this work, approximations containing totally up to 
80 basic functions were used. Such approximations 
guarantee the internal convergence of the method in 
the investigated region of parameters. In this region 
the results received by both methods (the Galerkin 
method and the method of differential factorization) 
practically coincide. 

6. MECHANlCAL EQUILIBRIUM 
As already noted, when 

Gr+Grd = 0 (25) 

the basic plane-parallel flow velocity is equal to zero. 
AIso equal to zero are the parts of temperature and 
concentration distributions, r0 and c,, that depend 
on the transverse coordinate. Thus, we deal with the 
mechanical equilibrium state when the density dis- 
tribution is homogeneous in space but the horizontal 
temperature and concentration gradients are not zero 
and have the opposite directions. In this situation only 
the thermoconcentrational mechanism of instability is 
operative. The instability has a monotonous charac- 
ter, and the neutral regime should be determined from 
the condition /1 = 0. Then, the system of equations 
(20) yields 

(4 Iv - 2k2 4” + k4 #) - ik(GrQ + GY& = 0 

with appropriate boundary conditions (21 a-c). 
First, consider cases (a) and (c) when the ampli- 

tudes 6’ and c satisfy the same homogeneous boundary 
conditions. In this case the second and the third equa- 
tions of system (26) mean that 

(27) 

Introducing the new variable t?/Pr = ~/SC = 5 and 
operator B = d*/dy*-k2, we obtain two spectral 
problems 

~2#-ik(Ra+Ra,)~ = 0, g<--q5’ = 0 

4(&l) =@(+l) =O, i(+l) =0(a), 

1’(& 1) = 0 (c). (28) 

It follows from this that the sum Rat Ra, = R”, 
depending on the wavenumber k, is the critical par- 
ameter which determines the equilibrium stability 
boundary. Numerical solution of the problem for case 
(a) shows that the critical number R” corresponding to 
the threshold which results from minimization with 
respect to the wavenumber, is R” 5 R, z -406.8 ; the 
wavenumber of the most dangerous disturbance is 
equal to k, s 1.256. Taking into account equation 

(25), we find the parameters on the instability 
ary for case (a) 

406.8 
Rad= - l_s, Ru= 

406.8s 
1-s ’ 

406.8 406.8 
Gr, = - 

Sc( 1 - S) ’ Gr=sq-_S) 

bound- 

(29) 

It is possible to demonstrate that the same results 
take place in case (c), although here the boundary 
condition 1;( + 1) = 0 must be replaced by c’( + 1) = 0. 
We actually write down the spectral problem for case 

(c) 

f#(fl) = $‘(&l) = [‘(-&l) = 0. (30) 

Also, let us write the problem which is conjugate to 
problem (30). It can be derived from (30) by a stan- 
dard manner and has the form 

ZL%+2i&+yli = 0, &@q+ik& = 0; 

ti(+ 1) = $‘(k 1) = $(f 1) = 0, (31) 

where ($,q) are the amplitudes conjugate to (4, c). 
Problem (3 1) has the same spectrum of eigenvalues as 
the basic problem (30). Differentiation of the second 
equation of system (31) gives 

52$-ikR”f = 0, sf-a,Y = 0; 

i/q _t 1) = $‘(& 1) =J’( f 1) = 0, (32) 

where J’is a new variable determined by the relation 
q’ = -iki?$ The boundary problem (32) coincides 
with that for case (a). Thus, both spectral problems 
(28) have a common spectrum of eigenvalues and the 
results presented by equations (29) are preserved in 
case (cc). From these results it is seen that there exists 
absolute stabilization of equilibrium when S -+ 1. It is 
evident from the physical point of view : indeed, the 
thermoconcentrational mechanism of instability is 
caused by the difference in the relaxation times for 
diffusion and heat conduction, i.e. by the difference in 
the Prandtl, Pr, and the Schmidt, SC, numbers. 

In the case of variant (b) the situation is somewhat 
more complicated since relation (27) is no longer valid 
because of the difference in the boundary conditions 
for 8 and 5. Numerical results obtained for different 
values of S = Pr/Sc show that the wavenumber of the 
most dangerous disturbance, km, depends slightly on 
S. As in cases (a) and (c) for the critical Rad we have 
the formula Rad = R,/(l -S), where, however, R, is a 
function of S. The values of R, and k,,, for different 
values of the parameter S are listed in Table 1. Com- 
paring the data from Table 1 and these given by equa- 
tions (29) we see that in the region of small values of 
S all three variants of boundary conditions give the 
same result for the instability characteristics Rad 
and km. 
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Table 1. The equilibrium instability par- 
ameters for variant (b) 

s --R, km 

0 406.84 1.266 
0.0001 406.85 1.266 
0.0002 406.87 1.266 
0.0005 406.90 1.266 
0.001 406.96 1.266 
0.002 407.08 1.266 
0.005 407.44 1.268 
0.01 408.05 1.268 
0.02 409.32 1.272 
0.05 413.49 1.282 
0.1 421.95 1.302 
0.2 447.14 1.368 
0.5 728.52 2.068 

7. LONG-WAVE INSTABILITY and so on. 

In the cases of impermeable boundaries of the layer 
[variants (b) and (c) of boundary conditions] it is 
possible7to expect the existence of long-wave insta- 
bility with k, = 0 (physicahy this means that the dis- 
turbance wavelength is much larger than the layer 
thickness). Then to determine the stability boundaries 
it is possible to apply the regular method of per- 
turbations with the wavenumber k as a small 
parameter. 

Consider variant (b) of boundary conditions when 
Q( + 1) = 0, and <‘( + 1) = 0 and let k = 0 in general 
equations (20). This yields zero-order equations 

The boundary conditions for amplitudes in successive 
approximations coincide with those for the total 
amplitudes. In each order we obtain a non-homo- 
geneous system of equations. The solvability con- 
dition allows as to find a relation for appropriate 
approximation of the characteristic decrement ;1. 

Let us now turn to the first approximation. The 
solvability condition can be obtained by integrating 
both sides of the third equation of system (36) over 
the layer thickness. Taking into account the boundary 
conditions and the fact that v0 is an odd function of y 
we obtain A1 = 0. Then the solution of system (36) 
can be written as 

4’0” = -a,& 
$1 = it,Grd(y2 - 1)2/24 

&+P; = -aoo, 

&+rnb = -a,& (33) 

with boundary conditions 0,( +- 1) = 0 and <‘( f 1) 
= 0. It can be shown that all the levels of the spectrum 
of this problem correspond to damping disturbances 
except for one which is a neutral ‘concentrational- 
type’ level : 

A, =o, &) =o, B, =o, to =const. (34) 

Here the constant can be chosen to be equal to unity, 
for example, under appropriate normalization. 

When k is small the solution “can be constructed in 
the form of power expansions 

4 = &k-t+zk’+. . 

8 = 8,k+BZk2+... 

t = 50+t,k+tzk2+... 

R = A,k+&k2+. . . . (35) 

s Substituting these expansions into the original sys- 
tem of amplitude equations (20) and equating the 
terms at the same degrees of k, we obtain the systems 

of successive approximations : in the first order 

+pfl = ito~r-lto 

in the second order 

(36) 

(37) 

8, = i&PrGr,(3y5 - 10y3 -t- 7y)/360 

5, = isoSc (Gr+2Gr,) (3y5 - 10y3 + 15y)/360. (38) 

The solvability conditions for the second-order 
equations can be obtained by integrating both sides 
of the last equation of system (37). A formula for h, 
is defined as 

Substituting tit and cl from equations (38) yields 

12 =&+ 2&&(Gr+Gr”) (Gr-t3Gr,). (40) 

The stability boundary can be obtained from the con- 
dition ;/* = 0. Thus, the equation for the stability 
boundary on the plane (Gr,, Gu) will have the form 

(41) 

As can be seen, the neutral line on the plane (GYP, Gr) 
that separates the regions of stability and instability 
depends only on the parameter SC but does not depend 
on Pr. Examples of neutral lines are presented in Fig. 
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FIG. 2. Stability boundary for long-wave mode on the plane 
(Gr,, Gr). Solid line, variant (b) ; dashed line, variant (c) 

(Pr = 0.01). 

2. The long-wave type instability exists only in the 
case when the signs of Grd and Gr are opposite (i.e. if 
the horizontal gradients of temperature and con- 
centration of the lightest component have opposite 
directions). The instability region exists if 
lGrdl z=- 37.65/Sc, i.e. IRadl > 37.65. The straight lines 
Gr= -GGP.~ (isoline of equilibrium states) and 
Gr = -3Grd are the asymptotes for neutral lines of 
long-wave disturbances. 

In an analogous way one can analyse the case (c) 
when 8’ (t_ 1) = 0 and 4’ (2 1) = 0. In the zeroth 
order in k we have 

A,, = 0, c$~ = 0, 19, = const, t,, = con&. (42) 

Constructing the expansions in powers of k and deter- 
mining corrections of successive orders to charac- 
teristic decrement A,, &,. from the solvability con- 
ditions we find that ill = 0, as in the case of variant 
(b). The solvability condition for the second-order 
system gives &, and then we find the equation of 
neutral line on the plane (Gv,, Gr) from the condition 
a, = 0 

+4(Gr+G~~)(Pr~Gr+Sc~G~~)+2835 = 0. (43) 

Now, the neutral lines of long-wave instability depend 
on both parameters : the Prandtl number, Pr, and the 
Schmidt number, SC. The form of the neutral Iine is 

qualitatively close to that which corresponds to vari- 
ant (b) (see Fig. 2). In the limiting case of Pr cc 1, 
equation (43) reduces to equation (41). The lower 
branches have the straight line of equilibrium 
Gr + Gv, = 0 as an asymptote. 

The stability boundaries, equations (41) and (43), 
obtained in this section correspond to the long-wave 
mode k = 0. To find out whether this mode is most 
dangerous or not, it is necessary to compare 
with numerical results obtained for the case of an 
arbitrary k. 

8. NUMERICAL RESULTS: VARIANT (a) 
Now consider the results of numerical solution of 

the spectral amplitude problem. Here we shall confine 
ourselves to the region of small Prandtl numbers, Pr, 
considering liquid metals or semiconductors with 
admixtures. 

In the case of a single-component medium (Gr, = 0, 
SC = 0) the instability of advective Aow in the region 
of small Prandtl numbers is caused by a purely hyd- 
rodynamic mechanism. If Pr = 0, the general ampli- 
tude problem reduces to that of Orr-Sommerfeld for 
the stability of an isothermal flow with a cubic velocity 
profile, equation (12), and without convective buoy- 
ancy force. In this case the minimum of the neutral 
curve is connected with the wave number km = 1.34 
and corresponds to the critical Grashof number 
Gr, = 495.6 (see ref. 111). When the PrandtI number 
increases, the stability boundary rises sharply due to 
the formation of the layer of stable stratification just in 
the region of the development of disturbances. When 
Pr-+Pr*, the flow becomes absolutely stable respect 
to hydrodynamic mode. The value of Pr, depends 
on the boundary conditions for temperature. For the 
cases of high-conductive and thermally insulated 
boundaries we have Pr, z 0.32 and Pr, FZ 0.15, 
respectively (Fig. 3). Just the same results are obtained 
in the limiting case of an isothermal binary mixture in 
the absence of a longitudinal temperature gradient 
when the flow is caused only by a longitudinal con- 
centration gradient (Gr = 0, Pr = 0). In this case the 
stability curves correspond to those presented in Fig. 
3 but with coordinates SC - Gr,,. 

In the general case of binary mixture advection in 
the presence of both temperature and concentration 
gradients, the stability boundary is determined by the 
curve on the plane (Gr,, Gr), which depends on two 
parameters ; the Prandtl number, Pr, and the Schmidt 
number, SC. 

In Fig. 4 a family of stability curves on the plane 
(Gr,, Gr) is presented (result of minimization respect 
to the wavenumber k) for Pr = 0.0 1 and several values 
of SC > Pr [variant (a) of the boundary conditions for 
temperature and concentration]. By symmetry argu- 
ments, there is exactly the same family of curves on 
the plane (Gv,, Gp_) which can be obtained from the 
family presented in Fig. 4 by inversion through the 
coordinate origin. For all the stability curves the ori- 
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FIG. 3. Stability threshold relative to hydrodynamic mode for a single-component medium. (1) boundaries 
of; high conductivity ; (2) thermally insulating boundaries. Solid curves, critical Grashof numbers ; dashed 

curves, critical wavenumbers. 

FIG. 4. Stability curves on the plane (Gr,, Gr) for several values of SC [Pr = 0.01 ; variant (a)]. Dashed 
straight line, line of equilibrium : Gr,+ Gr = 0. 

gin of the coordinates belongs to the region of 
stability. * 

Calculations show that, in the investigated region 
of parameters, the instability has a monotonous 
character, i.e. the imaginary part of the decrement A2, 
is equal to zero on the stability boundary. 

As can be seen from amplitude problem (ZO), (21), 
in the limiting case of Pr << Pr, and SC << SC, it is 
possible to neglect temperature and concentration dis- 
turbances and thus to reduce the problem to the Orr- 
Sommerfeld problem for velocity distribution (12). 
Here, the sum Gr+ Gr, will play the role of the insta- 
bility parameter, and the stability boundary on the 

plane (Grd, Gr) will be described by the straight line 
Grd+Gr = const, where const zz 500. The line of the 
family in Fig. 4 for SC = 0.01 corresponds to this 
straight line. As SC increases, the stability curves 
deform strongly due to the interaction between hyd- 
rodynamic and thermoconcentrational mechanisms of 
instability. All the curves intersect at the point 
Grd = 0, Gr x 500 due to the fixed value of the Prandtl 
number (Pr = 0.01). When SC = 0.1, the point of 
intersection of the stability curve with the Gr, axis is 
displaced to the side of high values of Gr, in the region 
Grd ~0 (as compared to the case of SC = 0.01). The 
threshold of instability caused by the concentrational 
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FIG. 5. Stability curves on the plane (Ra, Ra) [Pr = 0.01 ; variant (a)]. Dashed straight lines, equilibrium 
lines for corresponding S: Rat S- Ra, = 0. 

component of the flow rises and when SC > SC, = 
0.32 the stability curve does not intersect the GYP axis. 
In the region Grd (0, the curve of SC = 0.1 intersects 
the straight line Gv,+ Gr = 0, which corresponds 
to the equilibrium (dashed line in Fig. 4) at the 
point determined by formula (29), namely, Gr, = 
-406.8/P,(l -S) = -45.2 x 103. Thus, in the region 
of negative and rather large absolute values of Gr, the 
instability is transferred to the thermoconcentrational 
(double-diffusive) mechanism. 

With a further increase in SC (curves SC = 1 and 
SC = lo), it is possible to distinguish two branches on 
the stability curve (to the right and to the left of 
the minimum point) that correspond to physically 
different instability mechanisms. The increase of stab- 
ility in the region of positive Gr, with increasing Gr, 
and SC is caused by the rise of the potentially stable 
vertical density gradient in the zone of the evolution 
of disturbances due to the vertical concentration 
gradient. This part of the stability curve is associ- 
ated with the hydrodynamical mechanism. The left 
branch of stability curve, which is very close to 
the equilibrium line, is associated with the thermo- 
concentrational instability mechanism. 

The behaviour of the family curves in Fig. 4 allows 
us to predict the asymptotics of the stability bound- 
aries on the (GP~, Gr) plane in the limiting case of large 
SC. Indeed, in this case the region of instability is 
bounded by the Gr axis and straight line of equilibrium 
Gr+ Gr, = 0. On the whole this situation persists with 
variation of the Prandtl number, at least within 
0 -=c Pr -K Pr, = 0.32, since then the point of inter- 
section of the family curves shifts with the Gr axis. 
The establishment of asymptotics with increase in SC 
can be distinctly seen in Fig. 5 where the stability 
curves are presented in the coordinates (Rad, Ra). 

In Fig. 6 a family of neutral curves Gr(k) for 
PV = 0.01 and SC = I, and few negative values of Gr, 
is presented as an example. Figure 7 includes some 
numerical data on the wavenumber k, for the most 
dangerous disturbances. 

It should be emphasized in conclusion to this sec- 
tion that, as numerical results show, in the region 
of parameters studied, there is no ‘factorization’ of 
instability boundaries caused by different mechanisms 
(now we are dealing only with 2D disturbances). The 
change of instability mechanisms (i.e. the transition 
from the hydrodynamical to thermoconcentrational 
mechanism) takes place continuously along the single 
stability curve with variation of parameters. 

9. NUMERICAL RESULTS : 
VARIANTS lb) AND (c) 

Now consider the results of numerical solution of 
the problem corresponding to variants (b) and (c) of 
boundary conditions. As in the previous section, we 
confine our attention to the cases of Pr = 0.01 and 
SC > Pr. As compared with variant (a), we see here a 
qualitatively new factor which is the appearance of 
long-wave instability. Thus, it is necessary to study 
the relationship between the Iong-wave (k, = 0) and 
cellular (k, # 0) modes. 

Let us turn to variant (b) and consider as an exam- 
ple the stability boundaries with respect to long-wave 
and cellular disturbances for the case of SC = 0.1. In 
the region of Grd > 0, where the instability is caused 
by hydrodynamical mechanism, the flow crisis is 
associated with the cellular mode (k,,, # 0), whereas, 
for Gr, -C 0, where the transition to thermo- 
concentrational mechanism takes place, there is a 
characteristic competition between cellular and long- 
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FIG. 6. Neutral curves on the plane (k, Gr) [Pr = 0.01 ; SC = 1; variant (a)]. Dashed curve corresponds to 

I e&iIibrium : Gr, = - &. 

FIG. 7. Criticaf wavenumber k, vs Grd for several SC [Pr = 0.01 ; variant (a)]. 

wave modes. The situation can’be illustrated by a 
family of neutral curves (Fig. 8) and by the stability 
boundaries on the plane (Grd, Gr) (Fig. 9). As can be 
seen from the form of neutral curve on the plane (k, 
Gr), at Gr, = - 100 the cellular type of instability is 
distinctly expressed. As lGrdl increases, the deter- 
mination of neutral curves testifies to the origination 
of the region of long-wave instability. This occurs at 
Gr, = -37.65/So = - 374.5 in accordance with for- 
mula (41). It can be seen that at Gr, = - 377 and 
-400 there are regions of long-wave instability but 
the absolute minimum of the neutral curve is supplied 

by the cellular mode. At Gr, = - 500 the long-wave 
mode is most dangerous ; the transition takes place at 
Gr,r -477. Thus, the stability boundary on the plane 
(Gr,, GJ-) (Fig. 9) is associated with the cellular mode 
in the region Gr, > -477 and with the long-wave 
mode when Grd < -477. Calculations show that in 
the region of large absolute negative values of Gr, 
(Gr, < - 1860) the reverse transition to the cellular 
form of instability takes place. 

The picture of interaction between the long-wave 
and cellular modes of instability changes when the 
Schmidt number, SC, increases. This is due to the fact 
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FIG. 8. Neutral curves family on the plane (k, Gr) for Pr = 0.01 ; SC = 0.1 [variant (b)] 
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FIG. 9. Stability boundaries on the plane (Gr,, Gr) [variant 
(b) ; Pr = 0.01 ; SC = 0.11. Solid curve, cellular instability 
boundary (results from minimization with respect to k). 
Dashed curve, instability boundary of long-wave mode deter- 

mined by equation (41) 

that, when the long-wave instability first appears at 
some negative value of Gr, it becomes most unstable 
at once. An example of such a situation is presented 
in Figs. 10 and 11, where a family of neutral curves 
Gr(k) and stability boundaries on the plane (Gr, Gr) 
are shown for SC = 0.5. The neutral curve cor- 
responding to Gr, = - 75 has a minimum and deter- 
mines the instability of pure cellular type. As /Gv~\ 
increases, the neutral curve minimum becomes lower 
and shifts to the side of small values of k. According 
to formula (41) at GYP = -75.3 the region of long- 
wave instability arises which is adjacent to the ordin- 
ate axis. When Grd -=c -75.3, the long-wave mode is 
most dangerous because it corresponds to lower (with 
respect to the cellular mode) values of the critical 
Grashof number, Gr. A further increase in I Gr,l leads 
to the unification of the instability regions on the plane 
(Gr,, Gr) and to the disappearance of the cellular 
mode (at Gr, c - 78.4). In the region of large absolute 
negative values of Gu, the minimum of the neutral 
curve again corresponds to k, # 0, so the cellular 
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FIG. 11. Stability boundaries [variant (b) ; Pr = 0.01 ; 
SC = 0.51. Solid curve, cellular instability boundary ; dashed 

curve, long-wave instability boundary. 

mode again becomes most dangerous (when 
GI-~ < - 365.6). 

The stability boundaries on the plane (Gr,, Gr) in 
the region of transition from the cellular to the long- 
wave mode are shown in Fig. 11. By determining the 
threshold value of the critical number Gr at a fixed 
Grd, it can be seen that non-singularity takes place. 
In the region Gr, > -75.3, instability is connected 
with the cellular mode, whereas for Gr, < -75.3 with 
the long-wave mode. At the point Grd = -75.3 the 
jump-like changes of the critical Grashof number and 
critical wavenumber take place (transition between 
points 1 and 2 in Fig. 1 l)_ On the other hand, if one 
determines the threshold value of Gr, at a fixed 

, Gr, then the picture is as follows : when Gr -=c 
65.21/Sc = - 130.4, the flow is stable [see equation 
(41)]. Within the range 130.4 -C Gr -C 164, the in- 
stability caused by the long-wave mode (the right 
boundary of the interval is determined by the position 
of point 3 in Fig. 11). When Gr > 164, the instability 
is of cellular character. 

In Fig. 12 the summary family of stability curves on 
the plane (Grd, Gr) for few different values of Schmidt 
number is presented for variant (b). As compared with 
variant (a) (Fig. 4), one can mark rather a sharper 
stabilization of hydrodynamical mode in the region 
of positive Grd values as the Schmidt number 
increases, and also the existence of specific com- 
petition between long-wave and cellular disturbances 
in the region of negative Gr, values. 

In the case of variant (c), when both boundaries are 
impermeable and thermally insulated, there exist only 
quantitative distinctions from variant (b). In particu- 
lar, both above-described ‘scenarios’ of interaction 
between cellular and long-wave modes are preserved. 
In Fig. 13 the stability boundaries on the plane (Gr,, 
Gr) are presented, whereas in Fig. 14 the dependence 
of the critical wavenumber on Grd is shown. As is seen 
at a fixed Schmidt number, SC, there exists an interval 
of the Gr, values inside of which the long-wave mode 
is most dangerous. The upper and lower boundaries 
of this interval are shown as functions of SC in Fig. 15 
(curves 1 and 2, respectively). Thus, the region of 
long-wave instability on the plane of (Gr,, SC) is just 
confined between these two curves. Note that these 
regions for variants (b) and (c) practically coincide. 

We do not present here the results of studying the 
form of neutral disturbances as eigenfunctions of spec- 
tral amplitude problem (20), (21). Note only that 
irrespective of the physical nature of the instability 
mechanism in the parameter region studied the neutral 
disturbances have the form of a system of vortices 
which is periodical along the x-axis. 

IO. CONCLUSION 

The linear stability of steady plane-parallel binary 
mixture advective flow in a horizontal layer under the 
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FIG. 12. Stability curves on the plane (Gr, Gr) [Pr = 0.01 ; variant (b)]. 

FIG. 13. Stability curves on the plane (Gr,, Gr) [PY = 0.01 ; variant (c)l. 

action of longitudinal temperature and concentration 
gradients is investigated. Three variants of boundary 
conditions on rigid boundaries are considered: (a) 
constant temperature and concentration gradients are 
maintained ; (b) temperature gradient is maintained 
whereas the boundaries are impermeable; and (c) 
both boundaries are impermeable and thermally insu- 
lated. The spectral amplitude problem for small 2D 
disturbances is formulated. The stability boundaries 
for the case of mechanical equilibrium are determined. 
For the cases of variants (b) and (c) the stability 
boundaries for long-wave disturbances are deter- 

mined analytically. The complete spectral amplitude 
problem is solved numerically for Pr = 0.01 and 
SC > Pr (liquid metal or semiconductor containing an 
admixture). The stability boundaries and charac- 
teristics of neutral disturbances are determined. It is 
shown that in all the cases considered the instability 
mechanism varies with the parameters, i.e. the 
transition from hydrodynamical to thermo- 
concentrational mechanism, 
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